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Abstract. We discuss the extension of Jensen’s inequality to the frame-
work of quasiconvex functions. Moreover, it is proved that our results
work for a class of signed measures larger than the class of probability
measures.
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From time to time, it is worth looking at old classical results. And
surprises are not far away. The aim of this paper is to discuss the case of
Jensen’s inequality, a basic result in real analysis, known to characterize the
convex functions. Trying to understand a result stated without proof by Fink
and Jodeit [4], we discovered that Jensen’s inequality actually works in a
much more general framework related to quasiconvexity and the restriction
to probability measures can be relaxed, allowing suitable signed measures.
The details are given below.

We start by recalling that a real-valued function f defined on an interval
I is called quasiconvex if

f ((1 − λ)x + λy) ≤ max {f(x), f(y)}
for all x, y ∈ I and λ ∈ [0, 1]. Quasiconvexity is equivalent to the fact that all
level sets Lλ = {x ∈ I : f(x) ≤ λ} are convex, whenever λ ∈ R. Clearly, every
convex function is also quasiconvex, but the converse fails. For example, every
monotonic function is quasiconvex. The continuous quasiconvex functions
have a nice monotonic behavior, first noticed by Martos [7]:

Lemma 1. A continuous real-valued function f defined on an interval I is
quasiconvex if and only if it is either monotonic or there exists an interior
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Figure 1. The graph of the function xex

point c ∈ I such that f is nonincreasing on (−∞, c] ∩ I and nondecreasing
on [c,∞) ∩ I.

For details, see the book of Cambini and Martein [2], Theorem 2.5.2, p.
37. That book also contains a wealth of examples and applications.

Figure 1 shows the graph of the quasiconvex function xex. This function
is decreasing on the interval (−∞,−1] and increasing on the interval [−1,∞).
It is concave on (−∞,−2] and convex on [−2,∞). An important feature of
this function that will be used in this paper is the fact that the tangent line
to the graph at any point x ≥ −1 is a support line.

Jensen’s inequality is usually stated in the framework of positive mea-
sures of total mass 1 (that is, of probability measures). The main feature
of a positive measure is the fact that the integral of a nonnegative func-
tion is a nonnegative number. Surprisingly, this property still works for some
signed measures when restricted to suitable subcones of the cone of positive
integrable functions. A simple example in the discrete case is offered by the
following consequence of the Abel summation formula: If (ak)n

k=1 and (bk)n
k=1

are two families of real numbers such that

a1 ≥ a2 ≥ · · · ≥ an ≥ 0 and
j∑

k=1

bk ≥ 0 for all j ∈ {1, 2, . . . , n},

then
n∑

k=1

akbk ≥ 0.

Indeed, according to the Abel summation formula, we have

n∑

k=1

akbk =
n−1∑

k=1

⎡

⎣

⎛

⎝
k∑

j=1

bj

⎞

⎠ (ak − ak+1)

⎤

⎦ +

⎛

⎝
n∑

j=1

bj

⎞

⎠ an ≥ 0.

This remark can be easily extended to the framework of Lebesgue integrabil-
ity.
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Lemma 2. Suppose that f : [a, b] → R is a nonnegative absolutely continuous
function and g : [a, b] → R is an integrable function. Then,

∫ b

a

f(x)g(x)dx ≥ 0,

in each of the following two cases:

(i) f is decreasing and
∫ x

a
g(t)dt ≥ 0 for all x ∈ [a, b]; or,

(ii) f is increasing and
∫ b

x
g(t)dt ≥ 0 for all x ∈ [a, b].

Proof. (i). Indeed,
∫ b

a

f(x)g(x)dx =
∫ b

a

f(x)d
(∫ x

a

g(t)dt

)

=
[
f(x)

∫ x

a

g(t)dt

]∣∣∣∣
x=b

x=a

−
∫ b

a

f ′(x)
(∫ x

a

g(t)dt

)
dx

= f(b)
∫ b

a

g(t)dt +
∫ b

a

(−f ′(x))
(∫ x

a

g(t)dt

)
dx ≥ 0,

as a sum of nonnegative numbers. The integration by parts for absolutely con-
tinuous functions is motivated by Theorem 18.19, p. 287, in the monograph
of Hewitt and Stromberg [5].

The case (ii) follows in a similar manner. �

By combining Lemma 1 and Lemma 2, we arrive at the following result:

Theorem 1. Suppose that f : [a, b] → R is a nonnegative absolutely continuous
quasiconvex function and g : [a, b] → R is an integrable function such that

∫ x

a

g(t)dt ≥ 0 and
∫ b

x

g(t)dt ≥ 0 for every x ∈ [a, b].

Then,
∫ b

a

f(x)g(x)dx ≥ 0.

Corollary 1. Under the hypotheses of Theorem 1 for the function g,
∫ b

a

f(x)g(x)dx ≥ 0

for every nonnegative continuous convex function f : [a, b] → R.

Proof. The absolute continuity of continuous convex functions f : [a, b] → R

is proved in [8], Proposition 1.6.1, p. 37.
�

Corollary 2. Under the hypotheses of Theorem 1,
∫ x

a

(x − t)g(t)dt ≥ 0 and
∫ b

x

(t − x)g(t)dt ≥ 0 for every x ∈ [a, b].
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A straightforward computation shows that the hypotheses of Theorem 1
are fulfilled by the function g(x) = x2 − 1

6 , for x ∈ [−1, 1]. Moreover,
∫ 1

−1

(
x2 − 1

6

)
dx =

1
3

> 0.

This fact makes the measure
(
x2 − 1

6

)
dx very special in the class of signed

measures.

Definition 1. (Niculescu and Persson [8], p. 179) A signed Borel measure μ
on an interval I is called a Steffensen–Popoviciu measure if μ (I) > 0 and

∫

I

f(x)dμ(x) ≥ 0

for every nonnegative continuous convex function f : I → R.

According to Corollary 1, an example of such measure on the interval
[−1, 1] is

(
x2 − 1

6

)
dx. Using the pushing-forward technique of constructing

image measures, one can indicate examples of Steffensen–Popoviciu measures
that have an arbitrarily given compact interval as support.

Corollary 2 is related to Lemma 4.1.3 in [8], p. 179 (see also [3]), which
shows that a signed Borel measure μ is a Steffensen-Popoviciu measure on
an interval [a, b] if and only if μ ([a, b]) > 0 and

∫ x

a

(x− t)dμ(t) ≥ 0 and
∫ b

x

(t−x)g(t)dt ≥ 0 for every x ∈ [a, b]. (SP )

If g : [a, b] → R is an integrable function such that
∫ b

a

g(x)dx = 1,

we define the barycenter of the absolutely continuous measure g(x)dx as its
moment of first order,

βg(x)dx =
∫ b

a

xg(x)dx.

The barycenter belongs to [a, b] when g(x)dx is a Steffensen–Popoviciu mea-
sure. This follows from (SP), by taking x = a and x = b.

Alternatively, the barycenter can be characterized as the unique solu-
tion βg(x)dx of the following equation involving the class of affine functions
on [a, b] :

Aβg(x)dx + B =
∫ b

a

(Ax + B)g(x)dx, for every A,B ∈ R.

Theorem 1 easily yields the Jensen-type inequality stated by Fink and
Jodeit [4]:

Theorem 2. Suppose that g : [a, b] → R is an integrable function that verifies
the hypotheses of Theorem 1 and also the condition

∫ b

a
g(x)dx = 1. Then,
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f
(
βg(x)dx

) ≤
∫ b

a

f(x)g(x)dx,

for every continuous convex function f : [a, b] → R.

Proof. Since f is the uniform limit of a sequence of convex polygonal func-
tions, we may assume that f itself is of this particular type. This assures
that the subdifferential ∂f(x), of f at any point x ∈ [a, b], is nonempty. Let
λ ∈ ∂f(βg(x)dx). Then,

f(x) ≥ f
(
βg(x)dx

)
+ λ

(
x − βg(x)dx

)
for every x ∈ [a, b].

and taking into account that g(x)dx is a Steffensen–Popoviciu measure, we
conclude that

∫ b

a

f(x)g(x)dx ≥
∫ b

a

(
f

(
βg(x)dx

)
+ λ

(
x − βg(x)dx

))
g(x)dx

= f
(
βg(x)dx

)
+ λ

∫ b

a

(
x − βg(x)dx

)
g(x)dx = f

(
βg(x)dx

)
.

�
An inspection of the argument of Theorem 2 reveals that a similar result

works for open intervals. Indeed, in this case, convexity implies continuity and
also the nonemptiness of the subdifferential at any point. See [8], Theorem
1.3.3, p. 21, and Lemma 1.5.1, p. 30.

Theorem 3. Suppose that g is a real-valued integrable function defined on an
open interval I such that

∫

I

g(x)dx = 1

βg(x)dx =
∫

I

xg(x)dx ∈ I

g(x)dx is a Steffensen–Popoviciu measure on I,

Then,

f
(
βg(x)dx

) ≤
∫

I

f(x)g(x)dx

for every convex function f : I → R with the property that fg ∈ L1(I).

An example of a function g that fulfils the conditions of Theorem 3 is

g(x) =
{

λe−x2+1 if |x| > 1
6λ
5

(
x2 − 1

6

)
if |x| ≤ 1,

where the constant λ > 0 is chosen such that
∫
R

g(x)dx = 1. Using the error
function

erf(x) =
2√
π

∫ x

0

e−t2dt,

one can show that the exact value of λ is

λ =
1

2
5 + e (1 − erf (1))

√
π

= 0.863 653 206 ... .
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The barycenter of the measure g(x)dx is the origin. This example can
be easily modified to provide examples of functions g on R for which g(x)dx
has a prescribed barycenter.

Interestingly, the hypothesis concerning the convexity of the function f
in Theorem 2 and Theorem 3 can be considerably relaxed using the concept
of point of convexity, recently introduced by Niculescu and Rovenţa [9].

Definition 2. Given a real-valued continuous function f defined on an interval
I, a point a ∈ I is called a point of convexity of f relative to a neighborhood
V of a (called neighborhood of convexity) if

f(a) ≤
n∑

k=1

λkf(xk), (J)

for every family of points x1, . . . , xn in V and every family of nonnegative
weights λ1, . . . , λn with

∑n
k=1 λk = 1 and

∑n
k=1 λkxk = a.

Reversing the inequality (J), one obtains the notion of point of
concavity.

Clearly, a continuous function f : I → R is convex if and only if every
point of I is a point of convexity relative to the whole domain. A simple
sufficient condition for a point a to be a point of convexity is the nonemptiness
of the subdifferential of f at a. Indeed, the condition λ ∈ ∂f(a) means the
existence of an affine function of the form L(x) = f(a) + λ(x − a) such that

f(x) ≥ L(x)

for all x in the domain of f . In this case,

f(a) = L(a) = L

(
n∑

k=1

λkxk

)
=

n∑

k=1

λkL(xk) ≤
n∑

k=1

λkf(xk),

for every family of points x1, . . . , xn in I and every family of nonnegative
weights λ1, . . . , λn with

∑n
k=1 λk = 1 and

∑n
k=1 λkxk = a.

Thus, every point x ≥ −1 is a point of convexity relative to the whole
domain of the function xex. See Fig. 1. In the case of the arctangent function
(which is convex on (−∞, 0] and concave on [0,∞)), every point x < 0 is a
point of convexity relative to the neighborhood (−∞, x∗], where x∗ > 0 is
the abscissa of the point where the tangent at x intersects again the graph.
The phenomenon of the existence of convexity/concavity points is genuine
for the class of continuous quasiconvex/quasiconcave functions.

The extension of Jensen’s inequality to the case of points of convexity
is as follows:

Theorem 4. Suppose that f : [a, b] → R is a continuous function and β is a
point of convexity of f relative to the whole domain. Then,

f(β) ≤
∫ b

a

f(x)dμ(x)

for every Borel probability measure μ on [a, b] having the barycenter β.
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Proof. The case of discrete probability measures is covered by Definition 2.
In the general case, we should notice that every Borel probability measure μ
on [a, b] is the pointwise limit of a net of discrete Borel probability measures
μα, each having the same barycenter as μ. See [8], Lemma 4.1.10, p. 183.

�

Theorem 4 makes easy the computation of the extremum of certain
functionals. For example, combining it with the technique of Dirac sequences
(see [6], Chapater XI), one can prove that for every β ≥ −1, the infimum of
the functional

F (g) =
∫ b

a

xexg(x)dx

over the convex set of all nonnegative integrable functions g : [a, b] → R such
that

∫ b

a

g(x)dx = 1 and
∫ b

a

xg(x)dx = β

is βeβ .
We end our paper with a result that extends Theorem 4 to the frame-

work of quasiconvex functions and signed measures. This is to be done by
adapting the main ingredient in deriving Theorem 2 from Theorem 1: the
fact that the sum between a convex function and a linear one is quasiconvex.

In general, the sum between a quasiconvex function and a linear function
is not necessarily quasiconvex. See the case of the functions x3 and −3x. On
the other hand, there are differentiable quasiconvex functions f : R → R

(such as xex) for which f(x) − f ′(c)x is still quasiconvex whenever c is a
point such that ∂f(c) 	= ∅. Such functions verify the following version of
Jensen’s inequality.

Theorem 5. Suppose that g : [a, b] → R is an integrable function that verifies
the conditions of Theorem 1 and

∫ b

a
g(x)dx = 1. Then,

f(βg(x)dx) ≤
∫ b

a

f(x)g(x)dx,

for every quasiconvex function f : [a, b] → R such that ∂f
(
βg(x)dx

)
contains

numbers λ with the property that x → f(x) − λx is also quasiconvex.

Proof. By our hypotheses, for λ ∈ ∂f
(
βg(x)dx

)
, we have

f(x) ≥ f(βg(x)dx) + λ(x − βg(x)dx) for every x ∈ [a, b]

and the nonnegative function f(x)−f(βg(x)dx)−λ(x−βg(x)dx) is quasiconvex.
By Theorem 1,

0 ≤
∫ b

a

[
f(x) − f(βg(x)dx) − λ(x − βg(x)dx)

]
g(x)dx

=
∫ b

a

f(x)g(x)dx − f(βg(x)dx)

and the proof is done. �
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The argument of Theorem 5 also covers the case of robust quasiconvex
functions, recently introduced by Barron, Goebel and Jensen [1].

Some of the results proved above (including Theorem 2 and Theorem 3)
can be extended easily to the context of several variables. However, the char-
acterization of Steffensen–Popoviciu measures in that context is still an open
problem. Only few examples are known. See the paper of Niculescu and Spiri-
don [10].
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